254 research outputs found

    Modeling the evolution space of breakage fusion bridge cycles with a stochastic folding process

    Get PDF
    Breakage-Fusion-Bridge cycles in cancer arise when a broken segment of DNA is duplicated and an end from each copy joined together. This structure then 'unfolds' into a new piece of palindromic DNA. This is one mechanism responsible for the localised amplicons observed in cancer genome data. The process has parallels with paper folding sequences that arise when a piece of paper is folded several times and then unfolded. Here we adapt such methods to study the breakage-fusion-bridge structures in detail. We firstly consider discrete representations of this space with 2-d trees to demonstrate that there are 2^(n(n-1)/2) qualitatively distinct evolutions involving n breakage-fusion-bridge cycles. Secondly we consider the stochastic nature of the fold positions, to determine evolution likelihoods, and also describe how amplicons become localised. Finally we highlight these methods by inferring the evolution of breakage-fusion-bridge cycles with data from primary tissue cancer samples

    CYLD negatively regulates cell-cycle progression by inactivating HDAC6 and increasing the levels of acetylated tubulin

    Get PDF
    CYLD is a tumour-suppressor gene that is mutated in a benign skin tumour syndrome called cylindromatosis. The CYLD gene product is a deubiquitinating enzyme that was shown to regulate cell proliferation, cell survival and inflammatory responses, mainly through inhibiting NF-κB signalling. Here we show that CYLD controls cell growth and division at the G1/S-phase as well as cytokinesis by associating with α-tubulin and microtubules through its CAP-Gly domains. Translocation of activated CYLD to the perinuclear region of the cell is achieved by an inhibitory interaction of CYLD with histone deacetylase-6 (HDAC6) leading to an increase in the levels of acetylated α-tubulin around the nucleus. This facilitates the interaction of CYLD with Bcl-3, leading to a significant delay in the G1-to-S-phase transition. Finally, CYLD also interacts with HDAC6 in the midbody where it regulates the rate of cytokinesis in a deubiquitinase-independent manner. Altogether these results identify a mechanism by which CYLD regulates cell proliferation at distinct cell-cycle phases

    Mutational analysis of Peroxiredoxin IV: exclusion of a positional candidate for multinodular goitre

    Get PDF
    BACKGROUND: Multinodular goitre (MNG) is a common disorder characterised by an enlargement of the thyroid, occurring as a compensatory response to hormonogenesis impairment. The incidence of MNG is dependent on sex (female:male ratio 5:1) and several reports have documented a genetic basis for the disease. Last year we mapped a MNG locus to chromosome Xp22 in a region containing the peroxiredoxin IV (Prx-IV) gene. Since Prx-IV is involved in the removal of H(2)O(2) in thyroid cells, we hypothesize that mutations in Prx-IV gene are involved in pathogenesis of MNG. METHODS: Four individuals (2 affected, 2 unrelated unaffected) were sequenced using automated methods. All individuals were originated from the original three-generation Italian family described in previous studies. A Southern blot analysis using a Prx-IV full-length cDNA as a probe was performed in order to exclude genomic rearrangements and/or intronic mutations. In addition a RT-PCR of PRX-IV was performed in order to investigate expression alterations. RESULTS: No causative mutations were found. Two adjacent nucleotide substitutions were detected within introns 1 and 4. These changes were also detected in unaffected individuals, suggesting that they were innocuous polymorphisms. No gross genomic rearrangements and/or restriction fragment alterations were observed on Southern analysis. Finally, using RT-PCR from tissue-specific RNA, no differences of PRX-IV expression-levels were detected between affected and unaffected samples. CONCLUSIONS: Based on sequence and genomic analysis, Prx-IV is very unlikely to be the MNG2 gene

    DNA topoisomerases participate in fragility of the oncogene RET

    Get PDF
    Fragile site breakage was previously shown to result in rearrangement of the RET oncogene, resembling the rearrangements found in thyroid cancer. Common fragile sites are specific regions of the genome with a high susceptibility to DNA breakage under conditions that partially inhibit DNA replication, and often coincide with genes deleted, amplified, or rearranged in cancer. While a substantial amount of work has been performed investigating DNA repair and cell cycle checkpoint proteins vital for maintaining stability at fragile sites, little is known about the initial events leading to DNA breakage at these sites. The purpose of this study was to investigate these initial events through the detection of aphidicolin (APH)-induced DNA breakage within the RET oncogene, in which 144 APHinduced DNA breakpoints were mapped on the nucleotide level in human thyroid cells within intron 11 of RET, the breakpoint cluster region found in patients. These breakpoints were located at or near DNA topoisomerase I and/or II predicted cleavage sites, as well as at DNA secondary structural features recognized and preferentially cleaved by DNA topoisomerases I and II. Co-treatment of thyroid cells with APH and the topoisomerase catalytic inhibitors, betulinic acid and merbarone, significantly decreased APH-induced fragile site breakage within RET intron 11 and within the common fragile site FRA3B. These data demonstrate that DNA topoisomerases I and II are involved in initiating APH-induced common fragile site breakage at RET, and may engage the recognition of DNA secondary structures formed during perturbed DNA replication

    Identification of Distinctive Patterns of USP19-Mediated Growth Regulation in Normal and Malignant Cells

    Get PDF
    We previously reported that the USP19 deubiquitinating enzyme positively regulates proliferation in fibroblasts by stabilizing KPC1, a ubiquitin ligase for p27Kip1. To explore whether this role of USP19 extends to other cellular systems, we tested the effects of silencing of USP19 in several human prostate and breast models, including carcinoma cell lines. Depletion of USP19 inhibited proliferation in prostate cancer DU145, PC-3 and 22RV1 cells, which was similar to the pattern established in fibroblasts in that it was due to decreased progression from G1 to S phase and associated with a stabilization of the cyclin-dependent kinase inhibitor p27Kip1. However, in contrast to previous findings in fibroblasts, the stabilization of p27Kip1 upon USP19 depletion was not associated with changes in the levels of the KPC1 ligase. USP19 could also regulate the growth of immortalized MCF10A breast epithelial cells through a similar mechanism. This regulatory pattern was lost, though, in breast cancer MCF7 and MDA-MB-231 cells and in prostate carcinoma LNCaP cells. Of interest, the transformation of fibroblasts through overexpression of an oncogenic form of Ras disrupted the USP19-mediated regulation of cell growth and of levels of p27Kip1 and KPC1. Thus, the cell context appears determinant for the ability of USP19 to regulate cell proliferation and p27Kip1 levels. This may occur through both KPC1 dependent and independent mechanisms. Moreover, a complete loss of USP19 function on cell growth may arise as a result of oncogenic transformation of cells

    CYLD regulates keratinocyte differentiation and skin cancer progression in humans

    Get PDF
    CYLD is a gene mutated in familial cylindromatosis and related diseases, leading to the development of skin appendages tumors. Although the deubiquitinase CYLD is a skin tumor suppressor, its role in skin physiology is unknown. Using skin organotypic cultures as experimental model to mimic human skin, we have found that CYLD acts as a regulator of epidermal differentiation in humans through the JNK signaling pathway. We have determined the requirement of CYLD for the maintenance of epidermal polarity, keratinocyte differentiation and apoptosis. We show that CYLD overexpression increases keratinocyte differentiation while CYLD loss of function impairs epidermal differentiation. In addition, we describe the important role of CYLD in the control of human non-melanoma skin cancer progression. Our results show the reversion of the malignancy of human squamous cell carcinomas that express increased levels of CYLD, while its functional inhibition enhances the aggressiveness of these tumors which progress toward spindle cell carcinomas. We have found that the mechanisms through which CYLD regulates skin cancer progression include the control of tumor differentiation, angiogenesis and cell survival. These findings of the role of CYLD in human skin cancer prognosis make our results relevant from a therapeutic point of view, and open new avenues for exploring novel cancer therapies

    Identification of a large rearrangement in CYLD as a cause of familial cylindromatosis

    Get PDF
    Pathogenic mutations in CYLD can be identified in patients affected with Brooke-Spiegler syndrome, (Familial) Cylindromatosis or multiple familial trichoepithelioma. To date, only technologies which are able to identify small point mutations in CYLD, such as sequence and WAVE analysis, were used. Here we describe the identification of a larger rearrangement identified by Quantitative PCR analysis of CYLD, indicating that a combination of these technologies is necessary when searching for pathogenic mutations in CYLD

    Network-Guided Analysis of Genes with Altered Somatic Copy Number and Gene Expression Reveals Pathways Commonly Perturbed in Metastatic Melanoma

    Get PDF
    Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression (‘SCNA-genes’) in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer

    Bayesian estimation of genomic copy number with single nucleotide polymorphism genotyping arrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The identification of copy number aberration in the human genome is an important area in cancer research. We develop a model for determining genomic copy numbers using high-density single nucleotide polymorphism genotyping microarrays. The method is based on a Bayesian spatial normal mixture model with an unknown number of components corresponding to true copy numbers. A reversible jump Markov chain Monte Carlo algorithm is used to implement the model and perform posterior inference.</p> <p>Results</p> <p>The performance of the algorithm is examined on both simulated and real cancer data, and it is compared with the popular CNAG algorithm for copy number detection.</p> <p>Conclusions</p> <p>We demonstrate that our Bayesian mixture model performs at least as well as the hidden Markov model based CNAG algorithm and in certain cases does better. One of the added advantages of our method is the flexibility of modeling normal cell contamination in tumor samples.</p

    Estimation of Parent Specific DNA Copy Number in Tumors using High-Density Genotyping Arrays

    Get PDF
    Chromosomal gains and losses comprise an important type of genetic change in tumors, and can now be assayed using microarray hybridization-based experiments. Most current statistical models for DNA copy number estimate total copy number, which do not distinguish between the underlying quantities of the two inherited chromosomes. This latter information, sometimes called parent specific copy number, is important for identifying allele-specific amplifications and deletions, for quantifying normal cell contamination, and for giving a more complete molecular portrait of the tumor. We propose a stochastic segmentation model for parent-specific DNA copy number in tumor samples, and give an estimation procedure that is computationally efficient and can be applied to data from the current high density genotyping platforms. The proposed method does not require matched normal samples, and can estimate the unknown genotypes simultaneously with the parent specific copy number. The new method is used to analyze 223 glioblastoma samples from the Cancer Genome Atlas (TCGA) project, giving a more comprehensive summary of the copy number events in these samples. Detailed case studies on these samples reveal the additional insights that can be gained from an allele-specific copy number analysis, such as the quantification of fractional gains and losses, the identification of copy neutral loss of heterozygosity, and the characterization of regions of simultaneous changes of both inherited chromosomes
    corecore